The American Power Grid

I have written on this subject more than once, but this subject is in my mind the greatest threat to the United States that exists.  In previous articles I have discussed EMP attacks, terrorist attacks on power stations, etc.  Ignoring those threats, there still exists serious threats that are not based on men.  (For more information on threats from men vs. nature, search for ‘grid’ on my blog for relevant articles.

I would strongly suggest reading this topic as it may save you life in the future.  Being prepared is the first step in survival.  Being complacent is the first step in disaster.

First, a little education.

According to the United States Department of Energy, the American power grid is made up of three smaller grids, known as interconnections, which transport energy all over the country. The Eastern Interconnection provides electricity to states to the east of the Rocky Mountains, while the Western interconnection serves the Rocky Mountain states and those that border the Pacific Ocean.

The Texas Interconnected System is the smallest grid in the nation, and serves most of Texas, although small portions of the Lone Star state benefit from the other two grids.

And if you’re wondering why Texas gets a grid of its own, according to the Texas Tribune they have their own grid “to avoid dealing with the feds.” 🙂

When you look at the layout of the grid above, it’s easy to see that a single grid going offline would disrupt a huge segment of North America.

To give it to you straight, our national electrical grid works as an interdependent network. This means that the failure of any one part would trigger the borrowing of energy from other areas. Whichever grid attempts to carry the extra load would likely be overtaxed, as the grid is already taxed to near max levels during peak hot or cold seasons.

The aftermath of a single grid going down could leave millions of residents without power for days, weeks or longer depending on the scope of the failure.

So although on the surface it looks like the U.S. has wisely put its eggs into three separate baskets for safer keeping, the U.S. has in essence, lined up our baskets so that if one were to drop, or if the bottom were to fall out, the eggs from basket #1 would fall into basket #2. Which would break from the load, falling into basket #3—eventually scrambling all the eggs. Sorry, Texas.

When multiple parts of the grid fail at the same time, it’s not necessarily more catastrophic—the catastrophe just happens more quickly.

According to Jon Wellinghoff, chairman of the Federal Energy Regulatory Commission, in an interview with USA Today, “You have a very vulnerable system that will continue to be vulnerable until we figure out a way to break it out into more distributed systems.”

The Grid, by the Numbers

So what are we doing about it??

1. Through the Recovery Act, the DOE invested about $4.5 billion in the power grid since 2010 to modernize it and “increase its reliability”. $4.5 billion seems like a fairly large number, unless you’re talking about a single machine that serves as the lifeblood to nearly every human in North America—a machine that was conceived in 1882 by Thomas Edison—with little changed since then, conceptually speaking. For people who reside in weather-challenged areas, such as my home state of Michigan, a home generator is almost as necessary of an appliance as a microwave, and people are scrambling to go “off-grid” with alternative energy solutions—an act that will not provide them immunity should the lights go out everywhere else. And for what it’s worth, for those of you sporting solar and wind energy, you’re further taxing the grid—the grid just wasn’t designed to accommodate the surges and lulls of such systems, however green you find them.

2. Power outages—just the ones due to severe weather—cost the U.S. economy between $18 and $33 billion annually in spoiled inventory, delayed production, grid damage, lost wages and output. Despite a few billion dollars being thrown at the grid to improve its resiliency or reliability, the number of outages due to weather is expected to increase, assuming that climate change will indeed intensify extreme weather, as some predict.

3. The total annual cost from power outages, per federal data published in The Smart Grid: An Introduction, is a whopping $150 billion.

4. As of 2014, the DOE had generously spent $100 million (million, not billion) into modernizing the grid for the specific purposes of surviving a cyber incident by maintaining critical functions. This would be measures separate from making the grid more reliable.

5. The American Society of Civil Engineers gave the electrical grid a grade of D+ in early 2014 after evaluating the grid for security and other vulnerabilities.

6. The average age of large power transformers (LPTs) in the US is 40 years, with 70 percent of all large power transformers being 25 years or older. According to the DOE, “aging power transformers are subject to increased risk of failure.”

7. LPTs cannot be easily replaced. They are custom built, have long lead times (even 20 months, in some cases), cost millions of dollars, are usually purchased from foreign entities due to limited U.S. capacity, and weigh up to 400 tons. All this means that patching and fixing is likely to be favored over replacement, despite their age and associated risk.

Let’s put all of this into dollars and cents.  The U.S. has invested, from 2010 to 2014, $4.5 billion to modernize the grid, along with an additional $100 million to stave off cyber threats. That’s $4.6 billion over four years, or $1.15 billion per year in upgrades. Next to the $150 billion lost each year due to outages, it looks like someone has done some sub-par calculating..??

What we are certain of, is that severe weather will continue to stress and threaten our power grid. And unless something changes, ultimately, it will fail. So when we talk about reliability, we’re talking about “when” and “for how long” scenarios, not “what if”.

The how-long factor plays a huge role into how bad is “bad”; not because of the events that one knows will follow, which includes mass food spoilage, deaths due to overheating in the hot summer months, deaths due to freezing in the cold regions, and the halting of everything we take for granted these days—airlines, internet and most other forms of communication.

All that sounds pretty bleak, but when you throw into the mix the mania and hysteria that would ensue shortly after such catastrophic events, it will be so much worse. Best-selling author Charles Mackay, in his book Extraordinary Popular Delusions and the Madness of Crowds, does a pretty good job describing, through example, how crowd decisions and reactions are significantly less sensible than individual decisions—sometimes downright nutty, as evidenced by Tulip Mania, where supply and demand—or in this case scarcity and demand, drove up the prices of tulip bulbs to ridiculous levels.

In the context of blackouts, we saw this in 1977, when a lightning strike in New York on a Hudson River substation tripped two circuit breakers, causing power to be diverted in order to protect the circuit. The chain of events that followed ended in an entire blackout for the area, which led to mass rioting, over 1000 deliberately set fires, the looting of 1600 stores, and the eventual arrest of 4,500 perpetrators and the injury of 550 officers, according to some estimates. The power was only out for 25 hours, and in one area.  And that is not taking into consideration the out of control public we have today vs. then!!

In all likelihood, the haves (those who have removed themselves from the grid and prepared accordingly — e.g., generators, etc.) will soon be overrun by the have-nots in the event of any extended blackout, with heavily populated areas taking the brunt of the chaos—and your solar roof panels or generator will not suffice as your savior.

A Bright Note.?

There is currently a rumor that the Texas legislature is considering hardening their own grid from potential EMP attacks.  But that doesn’t account for the scenarios involving ‘natural’ overloads due to grid segments collapsing.  That meaning — saying it again — the public should be aware of our situation and be preparing for potential disasters involving our grid.  But then that would mean ‘informing the public’ of a real potential threat.

Instead we’re be warned about ‘global warming’ and pets being killed at the pound…

And speaking of ‘man made’ disasters — the EMP attack is probably the worst scenario this country could face above all ‘natural’ threats.  To learn about the EMP threat, watch the following video presented by Act! For America with the director of the EMP commission speaking — Dr. Peter Pry.  This is the factual scoop from ‘the man’ that knows.

ACT! For America – Dr. Peter Pry








2 thoughts on “The American Power Grid”

    1. I’m not sure, but I “think” it’s because their western area is so sparse with people they wanted to just piggy back us..?

      I keep trying to educate people on this subject, but it seems no one is concerned..?! I am pushing for a bill in Texas to harden our grid in preparation for a ‘major failure’. e.g., EMP There is FAR too much conflict in this world to ignore the potential of war. My guess is we’ll see something big within the next five years..??


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s